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ABSTRACT

1340 %

This report describes the analysis and design synthesis of the supporting structure
of a stabilized platform, the primary objective being to minimize the weight of the sup-
porting gimbals. The analysis resulted in an over-all weight reduction of 24, 53 pounds
(calculated) in the supporting structure (original weight — 54, 41 pounds) with only a
16 per cent reduction (calculated) in the lowest system response frequency.

Considered in the analysis were stresses and deflections for an 8-g linear accelera-
tion. The calculations were carried out with the aid of a Bendix G-20 digital computer.
A generalized stiffness-matrix computer program was written for this problem and was
used to calculate the displacements for various loading conditions. The stresses were
calculated by means of an additional program used in conjunction with the stiffness-matrix
program, The redesigned structure was then analyzed for response frequencies.

This research program was initiated in July, 1962, under contract with NASA and
covers work performed during the period July 1, 1962, to December 28, 1962, 4 LA~
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SPACE-VEHICLE STABILIZED-PLATFORM
GIMBAL-SYSTEM WEIGHT-REDUCTION STUDY

PHASE 1. DESIGN OF RING GIMBALS

by

J. E. Sorenson, J. C. Gerdeen, L. E. Hulbert,
T. J. Atterbury, and G. M. McClure

INTRODUCTION

The importance of reducing the dead weight in the final stages of ballistic missiles
and space vehicles becomes apparent when one examines the launching weight-to-payload
ratios. For a two-stage ballistic missile, this ratio is approximately 42, (1)* This im-
plies that a l-pound reduction in the payload results in a 42-pound reduction in the
launching weight of this type of vehicle. When the payload must be accelerated to orbital
velocity, this ratio is much higher, It has been stated(l) that each additional pound of
satellite results in an addition of 10,000 pounds to the launching weight of the vehicle,
Therefore, it appears that any reduction in the payload dead weight results in a sub-
stantial reduction in the final vehicle weight,

With this emphasis placed on achieving minimum weight, critical examinations are
made of the design of each component, In the Saturn vehicle, the supporting gimbals of
the stabilized platform appear to have more weight than is necessary to perform their
function,

The ST-124 inertial platform weighs approximately 110 pounds (excluding the
hemispherical covers), The supporting structure (gimbals and frame) accounts for ap-
proximately 49. 5 per cent or 54, 4 pounds (excluding the trunnions), This research
program was undertaken to reduce the weight of these supporting members as much as
possible without exceeding predetermined stress or stiffness limits at any point in the
assembly ~ at the same time, keeping the over-all dimensions of the inertial platform the
same, and retaining all of the present components (support trunnions, gyros, electronic
components, etc.)

After an examination of the problem, it was decided to channel the research effort
into three parallel studies:

® A materials investigation
® An engineering study

® A design synthesis using stress, deflection, and vibration programs
written for Battelle's Bendix G-20 digital computer,

Various materials were studied to determine the best one for a minimum weight
design. The problem was not simply to select the material with the best strength-to-
weight ratio, but to examine all of the mechanical properties and methods of fabrication
and determine their relative importance in this design.

* References are listed at the end of this report.

BATTELLE MEMORI AL INSTITUTE
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The engineering study consisted of examining all the components of the ST-124
inertial platform and their relation to the size of the supporting gimbals. Also, a stress
analysis of the gimbals was undertaken, using available theoretical load-stress relations.
This was necessary to insure that the computer study resulted in a practical design.

The frame with its covers was considered a spherical shell. Design was based upon
theory of shells.

The design synthesis began by writing the necessary computer programs to cal-
culate stress, deflection, and natural frequency for various loading conditions, After
completion of these programs, results from the engineering study were used for the first
typical design. The stresses and deflections in this design were then calculated for
various loading conditions with the aid of these programs. After examination of these
data (stresses, deflections, and response frequencies), modifications were made in the
design at points of high and low stress and a new set of input data was formulated. The
stresses and deflections were then calculated for this revised design. This iteration
process continued until the critical design factors reached their limiting values.

BATTELLE MEMORIAL INSTITUTE
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RESULTS AND RECOMMENDATIONS

As a result of the analysis, the recommended configuration of the structural com-
ponents is shown on Drawings 1001, 1002, 1003, and 1004 attached to this report,

The material recommended for the gimbals is beryllium. As will be discussed
later in this report, stifiness rather than strength is the controlling factor in the design.

Beryllium with its high stiffness-to-weight ratio is the best available material for a
minimum weight design.

The over-all weight reduction achieved is 24, 53 pounds. This represents a 50,5
per cent reduction in the weight of the structural components analyzed. In order to mini-
mize the weight of the supporting frame, the hemispherical covers were considered as
part of the load-carrying structure. That is, the frame was considered as a spherical
shell in the calculations. Aluminum is recommended for the frame because it is rela-
tively easy to fabricate into any shape, Alloys from the 5000 series are preferred for
the wrought components because of their formability, weldability, and strength., For
sand or permanent-mold cast parts with thin sections, a high-silicon grade, such as
356 is suggested.

Table 1 gives a comparison of the weights of these structural members.

TABLE 1, WEIGHTS OF THE PRIMARY STRUCTURAL MEMBERS

Weight, pounds

Present Proposed Net
Member Design Design Reduction

Inner gimbal casting (Be) 5. 87 5.87 -
Middle gimbal casting (Be) 7.93 3.02 4.91
Outer gimbal casting (Be) 5.96 2. 65 3,31
Redundant gimbal casting (Be) 12. 30 5. 44 6. 86
Frame (Al) 22. 35 12.90 9, 45

TOTALS 54, 41 29, 88 24,53

The following sections discuss the important factors considered in the design,

Stresses and Deflections

The stresses resulting from an 8~g linear acceleration are shown for each gimbal
in Appendix C (Figures C-2 to C~12). The deflections at various points in the assembly
are shown in Tables C~1 to C-8 in Appendix C. Both stresses and deflections are shown
for acceleration in each of the three directions X, Y, and Z, For a specific point in the
assembly, the maximum possible primary stress, due to bending moments, occurs for a
particular orientation of the acceleration vector, This stress is not shown but can be
computed from the equations given in Appendix C, However, at no point does it exceed
5000 psi (neglecting any stress concentrations) in the proposed assembly. In the present
assembly the maximum calculated bending stress is less than 2500 psi, With the use of
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flanged sections, a secondary flange bending stress results with torsional loads. This
stress occurs at the junction of the flanged section with the heavier trunnion area in the
middle and outer gimbals. The value of this stress depends on the stiffness of the
trunnions or the amount of external torsional restraint applied to the gimbal. This
stress is a maximum when the acceleration is normal to the plane of the gimbal (X direc-
tion for the middle gimbal and Y direction for the outer gimbal). The possible range of
this stress is 3000 psi (rigid trunnions) to 11,000 psi (flexible trunnions) for the middle
gimbal, and 2000 psi to 10,000 psi for the outer gimbal. However, the trunnions are not
completely flexible and therefore the value of this stress will be less than the maximum
value shown,

These higher-stressed areas are marked on the drawings. Because of the notch
sensitivity of beryllium, it is important to avoid creating any stress concentrations in
the vicinity of these high stresses. Therefore, care should be exercised in the fabrica-
tion of these gimbals to avoid placing any notch, hole, or sharp change in section in
these areas.

A comparison of the maximum displacement of the inner gimbal in the present and
proposed designs is shown in Table 2, A large portion of this displacement occurs in the
redundant gimbal and is due to the relatively low torsional stiffness of this member.

TABLE 2. DISPLACEMENT OF THE INNER GIMBAL FOR
AN 8~G LINEAR ACCELERATION IN THE +Y

DIRECTION
Relative Stiffness Displacement, 10™° inches
of Trunnions Present Design Proposed Design
Flexible 3784 5325
Rigid 807 1254

The terms ''flexible'' and ''rigid" are used to describe the relative stiffness of the
trunnions. The stresses and deflections for each condition represent the upper and lower
limits. For example, if the trunnions are very stiff, the stresses and deflections will
then approach the values shown for rigid trunnions. At the other extreme, if the trun-
nions are relatively flexible, the stresses and deflections will approach the values given
for flexible trunnions.

Response Frequencies

The response frequencies of the gimbals for various mode shapes are shown in
Table 3. The lowest response frequencies of the systems are shown in Table 4.

If the system response frequency is lower than desirable, two possibilities exist
for increasing it without inflicting a severe weight penalty on the system. First, a large
portion of the deflection, when the acceleration is in the Y direction, is due to the low
torsional stiffness of the redundant gimbal., When the loads are normal to the plane of

BATTELLE MEMORI AL INSTITUTE




TABLE 3. LOWEST RESPONSE FREQUENCIES OF THE GIMBAILS

Frequency, cps
X Y Z
Present Proposed Present Proposed Present Proposed
Gimbal Design Design Design Design Design Design

Simply Supported at Two Points (180 Degrees Apart)
With No Supported Mass

Middle 1200 464 1375 1052 1195 1001
Outer 2060 1900 1685 968 2340 2140
Redundant 1055 672 390 368 925 673

Simply Supported at Two Points (180 Degrees Apart)
With One~Half the Mass of the Inner Components

\;U.LLL—CLLLL ALTU Al SULILLD 7V LJTRITES L 1ULLl LIIC OUpporLs

Middle 581 231 643 520 622 514
Outer 760 626 560 302 715 640
Redundant 368 235 153 138 415 269

TABLE 4. LOWEST RESPONSE FREQUENCIES OF THE SYSTEM

Relative Frequency, cps
Stiffness X Y Z
of the Present Proposed Present Proposed Present Proposed
Trunnions Design Design Design Design Design Design
Flexible 288 163 144 121 311 224
Rigid 358 246 309 254 388 285

BATTELLE MEMORIAL INSTITUTE
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the gimbal, the gimbal sections are subjected to torsional loads and, if allowed to twist,
a large deflection will result at the points of loading. Therefore, the response frequency
can be increased by increasing the stiffness of the trunnions, especially those of the
redundant and outer gimbals. This would have the same effect as increasing the tor-
sional stiffness of the redundant gimbal. Second, the redundant gimbal itself could be
modified in such a manner as to increase its torsional stiffness,

The torsional stiffness of a beam with a rectangular cross section of width b, and
thickness h, is(2).

3
S:I—:b_ll.g_é.
e L

where
S = torsional stiffness
T = torque, in-1b

@ = angle of twist, radians

L

length of beam, inches
B = function of b/h

b/h=1, B =0,141

il

b/h =10, B =0.312

n

b/h=w, B =0.333
G = shearing modulus of elasticity, 1b/in. 2.

This equation indicates that the thickness, h, of the redundant gimbal should be
increased as much as possible in order to increase the torsional stiffness in the most
economical fashion. Calculations indicate that if the redundant gimbal cross section
approximates a rectangle, 2-1/2 x 5/8 inch, the lowest system response frequency could
be increased by 40 per cent over that of the proposed design and 16 per cent over the
present design. This magnitude of increased stiffness is not believed necessary for the
proposed design, This is pointed out as a simple method to increase system frequency
should it ever be required.

Frame Design

The frame was designed as a portion of a spherical shell, For such a shell, made
of aluminum and having a spherical diameter of 19, 50 inches and a thickness of 0. 050-
inch, the maximum deflection, rotation, and stress would be:

Maximum deflection (w) = 1260 x 106 inches
Maximum stress (o) = 4920 psi

Maximum rotation (A®) = 194 x 106 radians (40 seconds).

BATTELLE MEMORI AL INSTITUTE




The maximum deflection and stress occur in the shell next to the Z pivot supports for an
acceleration of 8 g at an angle of approximately 60 degrees to the Z axis. The maximum
rotation is for the Z pivot support for an 8 g acceleration in the X direction. A natural
frequency, f,, of at least 350 cps could be expected. Conservative calculations were
conducted to determine w, ¢, A¢, and f,. Actual w, o, and AP would be expected to be
lower than above, and actual f; would be expected to be higher.

BATTELLE MEMORIAL INSTITUTE
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MATERIALS INVESTIGATION

Data on high-strength alloys which may have applications in this design were
assembled. Particular emphasis was placed on beryllium(3), since it appears very
attractive because of its high strength-to-weight and elastic modulus~-to-weight ratios.
The preliminary study resulted in five candidate materials. The materials and their
properties are shown in Table 5. Flexibility in fabrication techniques was also consid-
ered in this investigation.

A comparison of the five materials was first made using the material-index ap-
proach. This comparison, using the strength-to-weight and modulus-to-weight ratios
as the indexes, is shown in Table 6.

The effect of the section geometry on the relative weights of rings fabricated from
the different materials is shown in Table 7. The comparison was made first for rings
with the same load-deflection (in-plane loading) characteristics and second for rings
with the same load-yield strength characteristics. The properties given in Table 5 were
used in these comparisons.

Another factor that must be considered in this design is the natural frequency of
the gimbals. Since the natural frequency is a function of the mass and deflection, the
relative weights shown for rings with the same load-deflection characteristic are also
the relative weights of rings with the same natural frequency (in-plane mode shapes).

On the basis of these comparisons, it appears that beryllium is the best material
(for minimum weight) when deflection or vibration is the criterion. However, when the
strength is the criterion, titanium appears to be the best available material for a
minimum-~-weight design. It is shown later in the study that vibration and stiffness are
the most important design criteria.

Machining the rings from hot-pressed blocks is expected to be the most satisfactory
method of fabrication within present technology. Higher strength forms of beryllium
now becoming available do not offer particular advantages because the strength is not
fully utilized. Because of beryllium notch sensitivity, insofar as possible, holes, dis-
continuities, etc., should not be located in the higher stressed areas marked on the
drawings.

BATTELLE MEMORIAL INSTITUTE
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TABLE 6. COMPARISON OF MATERIALS USING PHYSICAL AND
MECHANICAL PROPERTIES

Yield Strength-to-

Weight Ratio Stiffness-to- Weight Ratio

(%) (3)

108 psi 106 psi

Materials 1b in. -3 1b in. =3
Beryllium (QMV) 404 642
Magnesium (AZ80A-T5) 430 100
Aluminum (7075-T6) 614 102
Steel (4340 HT260) 766 102
Titanium (B~120VCA) 976 92

BATTELLE MEMORI AL INSTITUTE
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TABLE 7. RELATIVE WEIGHTS OF RINGS OF DIFFERENT MATERIALS

Relative Weight

a a
N N d
I changed by I changed by I changed by
Material varying a varying b varying d
Same Load{2)- Deflection Characteristics
Beryllium (QMYV) 1.00 1. 00 1. 00
Magnesium (AZ80A-T5) 1,82 6. 42 2.50
Aluminum (7075-T6) 2,43 6. 31 3.09
Steel (4340 HT260) 4.82 6.26 5. 85
Titanium (B-120VCA) 3.60 7.00 4.26
Same Load{?)-Yield Strength Characteristics
Beryllium (QMYV) 1. 00 1. 00 1. 00
Magnesium (AZ80A=T5) 0.95 0.94 0.95
Aluminum (7075-T6) 0.99 0. 66 0. 87
Steel (4340 HT260) 1.49 0. 52 1. 05
Titanium (B-120VCA) 1. 04 0. 41 0.76
(a) External load only (weight of ring assumed small in comparison to external load).
BATTELLE MEMORIAL INSTITUTE
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ENGINEERING STUDY

General

The present assembly was studied with the intention of minimizing any modifica-
tions in the gimbal components that might result from reductions in the size of the gimbal
section. It is possible that, by reducing the section size, some components may have to
be relocated or the method of mounting modified. By placing certain physical restric-
tions on the section geometry before completing the stress analysis, these modifications
may be minimized,

These restrictions result from the following:

(1) The over-all size of the present assembly must be maintained. The
size of each gimbal is restricted in the radial direction because of
clearances between gimbals.

(2) The support trunnions used in the present assembly will be used in
the new design. Therefore, there must be a sufficient amount of
ring material at these points in order to mount the trunnions.

(3) Various components are mounted to the gimbal between the support
points. The size of the gimbal must be such as to accommodate
these components. Also, the minimum thickness of any section is
limited because of the presence of threaded holes.

The section geometry also depends on the types of loads to which it is subjected.
A minimum-weight design for a member subjected to bending only would consist of a
section with a high section modulus-to-area ratio. This suggests the use of tubular or
flanged sections (I, channel, etc,). However, when flanged sections are subjected to
torsion, the torsional shearing stress and secondary flange bending stress (due to
torsion) can become important.

Stress Analysis of Middle,
QOuter and Redundant Gimbals

Because of the complexity of the geometrical requirements for the inner gimbal, it
appears that the weight reduction that could be achieved here is a rather small per cent
of the total weight (probably less that 1 per cent without redesign and relocation of the
inner gimbal components)., It was therefore decided to maintain the present design of
this gimbal and concentrate the research effort on the three other gimbals and the sup-
porting frame.

The middle, outer, and redundant gimbals are approximate ring structures. The
equations which apply to rings will therefore yield approximate solutions for these
gimbals,

The first step in the analysis was to define the loads acting on each gimbal. The
most general type of loading, resulting from inertial forces, is shown in Figure 1. In

BATTELLE MEMORI A INSTITUTE
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A = Area of section

Sr= Section modulus
aobout r axis

Sz=Section modulus
about z oxis

Acceleration
a

M,
Q
Ve My o~
.
T
Myz D
V, t
Element A A 43512

FIGURE 1, GENERALIZED LOADING CONDITIONS FOR A RING SUBJECTED
TO INERTIAL FORCES
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14
order to simplify the analysis, the forces were resolved into components acting in the
direction of the frame reference axis (Figure 2)., Each of the three cases shown in
Figure 2 may be further resolved into simpler subcases involving only one type of load.
Figure 3 shows the resulting seven subcases. The equations for the internal forces
from each one of these subcases are given in Reference (4).

The nomenclature used in the following analysis is either given in Figure 1 or is
included where necessary.

At a specific point in the ring, the equations for the internal forces are of the form
(after algebraic summation from the appropriate subcases):

M, = [(C1FxR + GouR% + C3M,) sin 6

+ (C4FxR + C5<n>R2 + C¢My) cos 8] cos ¥ (1)

M
Ty = [(C7Fy + CguR + Cg ¥} sin ©

M
+(C1oFx + Clle+C12Tx) cos 8] cos ¥ (2)

Vr = [(C13Fx+ CI4O)R+ Cl5 ? sin 6

+ (C1gFx + C17@R + Cyg Rﬁ) cos 6] cos ¥ (3)

M, = [C19F,R + CquR® + C21M, + CpMx] sin ¥ (4)
2

M, = [C23F R + C240R" + C, My + CpM,] sin ¥ (5)

Vz = [C27Fx + CZS“)R] sin Y, (6)

where C are constants pertaining to a particular point in the ring. Substituting the
values for F, R, o, My’ and M, the equations may be written:

M, = [K, sin 8 + K cos 8] cos ¥
T, = (K, sin © + K4 cos 8] cos ¥

Ve = [Kj si.t18+K6 cos 8] cos ¥
M, = K7 sin ¥
Mt=K8 sin ¥
V, =Kg sin ¥,

where K, are now constants for a specific point in the ring.
BATTELLE MEMORIAL INSTITUTE
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For rectangular, channel, or I sections, the normal stress at the outer corners
(most extreme fiber) is:

M, T; M,

o= —2+—4 L
Sz A S,
or
K, sin © + K, cos 0] [K3 sin © + K4 cos 0]
g = cos ¥ + cos ¥
+ﬁsin?. (7
Sr

This stress is a maximum when © = Om, and ¥ = ¥,

such that
92] =0 (8)

and

& | - 0. (9)
Yy "m

In order to simplify the calculations for @m, it is assumed that the stress due to

. . L. Tt Mg
T, is zero. This is valid if — << ==,
A S
z
i’-: [K{ cos 6 - K, sin 8] cos ¥
36 S,
_5_0_’1 =[K1cos® - K, sin @ ]%:0.
08 m ™ s
6 ,Y z
m’ m
The equation is satisfied when ‘i’m =7ET or
-1l K
o _ = tan 1[-_1} (10)

K,

When ¥y, = 71/2, the acceleration is in the z direction, and the forces Ty and M, are zero.
Therefore, the general solution is given by Equation (10).

Satisfying the second condition (Equation 9),

. [K, sin & + K, cos 6] 5%
oY Sz
sin ¥ K¢z
- [K3 sin © + K4 cos 6] + — cos V¥

r
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oa < ) K> K4 .y
ﬁ -—-+—-— smem-}- -—S-z-+-— cosem]sm m
m?’

K7
+ — cos ¥Y_ = 0.
m
Sy

This condition is satisfied when

K7/Sr
<—+-—— in © +<-—2 +—-—4> e . o
sin cos
m S, A m

Equation (7) may also be written,

‘l’m = tan~

o=[09g, sin @ + 0gy cos ®] cos ¥

+ [UTx sin@-l-oTycos €] cos ¥+ 0g, sin ¥,

where

Opx = bending stress at point under consideration for acceleration in
x direction,

dB = bending stress at point under consideration for acceleration in
y direction.

Oz = bending stress at point under consideration for acceleration in
z direction,

de= tensile stress at point under consideration for acceleration in
x direction,

0’T = tensile stress at point under consideration for acceleration in
y direction.

The equations for @m and ¥ = become

g
_ -1|YBx
@m = tan [Bgy-] (12)
and
- g
‘}.’m = tan ! [ Bz :l . (13)
dey + OTxy

The maximum stress, 0,,.., at a specific section in the ring occurs when the orientation

of the acceleration vector is 6, and ¥,,,, and is

Omax = [Opyx 8in 8, + Opy €08 O] cos ¥

+ [UTx sin 6 + oTy cos Gm] cos ¥, + 0y sin ¥, . (14)
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At any other orientation of the acceleration vector, the fiber stress at this section is less
than that given by Equation (14).

The shearing stress was computed in a similar manner.

This is the method used to make the first approximation for the various cross
sections. Neglected in the calculations was the secondary flange bending (for channels
and I sections) due to M;. This will be accounted for in the analytical study using the
computer. Also in this design, limits were placed on the size of the sections because of

the physical restrictions. Vibration was also neglected in this approach but is included
in the computer analysis,

The values for C, are given in Appendix A for 15-degree increments around the
ring.

Stress Analysis of Frame

Weight reduction on the frame was considered by changing its configuration from
that of a ring to that of 2 segment of a spherical shell in order to take advantage of in~

2wl Albes Ltimaas A nvaTh T A Avsserrabirea

—— e gy — -

spherical covers were considered together to constitute a complete spherical shell with
two trunion openings and additional reinforcements for assembly and mounting purposes.
For ease of fabrication of the shell, aluminum was considered as the material. Here
again beryllium would be the best choice of material from the property-index standpoint,
but it is not within present technology to fabricate the shell structure of this material,
The material constants for the analysis were:

TA aid tha analuvaeic tha frame and the adiaininge

Modulus of Elasticity (E) = 10 x 108 psi
Poisson's ratio (u) = 0. 33 (15)
Density (p) = 0. 101 1b/in. 3

(The analysis would also apply if the frame portion of the shell were made of

ALMAG 35 which has material constants nearly the same as those of aluminum.) The
shell dimensions used for calculation were:

Spherical shell radius (a) = 9. 75 in.
Outer trunion radius (b) = 3. 12 in. (16)
Shell thickness (t) = 0. 050 in,

(The thickness t = 0. 050 inch was found to give sufficiently low stress and deflections,
and high natural frequency. Calculations are illustrated for this thickness.)

To obtain an indication of stress level, representative membrane stresses were
first calculated. Method of calculation was similar to that described by Fligge,
Reference (5), pages 60-66. Figures 4 and 5 show the membrane forces N, Ny, and
Ngg around the © = 0-degree and 0 = 90-degree meridians, respectively, from the
shell's own inertia load p where:
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t A
p= Pg Y - Ib/in. 2 (18)

AY = acceleration in Y
direction = 8 g

The maximum membrane forces (maximum at the supports) in Figures 4 and 5 corre-
spond to membrane stresses of only 20 psi,

Figure 6 shows the membrane forces from attached inertia loading, of total load P.
For an inner mass of 65 pounds plus the weight of the +Z and -Z pivots, about 3 and
5 pounds respectively, the inertia load P for 8-g acceleration is:

P=8(65+3+5)=8(73) =5841b. (19)

The corresponding membrane stresses for this load are on the order of 1000 psi
maximum.

The membrane theory gives only a partial indication of the stress level. General
shell theory (membrane plus bending) must also be applied to determine the bending
effects around the pivot supports through which the attached inertia loading is trans-
mitted to the shell. Since the bending effects are localizea (tney wic vue rapidiy wei
creasing distance from support), effects f{rom opposite supports do not superimpose, and
can be calculated by considering loading only on one support. The loadings considered
are shown in Figure 7. Because of the large thickness of the pivot support (ring), it can

be considered to be quite stiff compared to the shell.

Fs F
F z
T )
t. 9=0 6=180

FIGURE 7. TYPES OF LOADINGS AT PIVOT
SUPPORT ON FRAME
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The loading Fy of Figure 7 is axisymmetric. The other loadings Fx and M are
antimetric (cosine-sine variation). These loadings were analyzed by the procedures
outlined in Appendix B. Calculations gave the following results:
From F:
Deflection, w = -0.037 x 10-4 F,
Stress, Op = ¥6.24 FZ - 8.90 F, (20)
Stress, UG =20.864Fz +2.94F, .
From Fx for 6 = 0 degrees:
Deflection, w = =0. 79 x 10-6 Fy
Stress, oy = +3.78 Fy + 2.08 Fy (21)
Stress, 0g = #1.53 Fx + 0.69 Fx
From M for 6= 0:
Deflection, w = 9.27 x 106 M
Stress, 0y = *7.90 M+ 1.71 M (22)

Stress, 0g =+2.43 M+ 0.56 M,

where the upper sign on bending component of stress refers to the outside of the shell and
the lower sign refers to the inside of the shell.

The relations between the deflection and stresses, and the forces Fz and Fyx and
the moment M can be used to determine the critical angle ¢' at which the deflection or
the stress will be maximum. From Figure 7, if a force F acts at an angle ¢' then:

Fz = F gin ¢'
Fyx = F cos ¢' (23)
M= zFy = 0.31 F cos ¢'.

The moment M is due to Fy acting at a moment arm at the support. The distance z from
the shell to the center of the bearing location was estimated at 0. 31 inches max.

The deflection w and stress 0p from the three loadings add to produce maximum
magnitudes at 8 = 180. Adding w and 0y from Equations (20), (21), and (22) for 8 = 180,
and introducing Equation (23) gives:

w=-0.037 x 10" F gin ¢' + 0.79 x 10-6 F cos ¢'

-9.27x 10-6 (0.31) F cos ¢'
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and
Oy = (¥6. 24 -8.90) F sin ¢'+ (¥3.78 -2.08) F cos ¢'

+ (¥2.43 -0.56) 0. 31 F cos ¢'
or

w=-3.7%10"6 F sin ¢' - 2.09 x 10°% F cos ¢'

(24)
Jp = ~15. 14 F sin ¢' -6. 79 F cos ¢',

where the upper sign has been taken for the bending components of Ty The values of ¢'
which maximize these expressions are:

@' = 60.5 degrees for maximum x

(25)
¢' = 65. 7 degrees for maximum 0 .
For an inertia load P of 584 pounds [ Equation (19)] attached to two supports:
B oma T o237 pewls (26)
2
Substituting ¢' from Equation (25) in Equation (24) for F = 297 pounds results in:
Maximum w = -4. 25 Fx 10~0 = -4, 25(297) x 10™® = -0, 00126

-16.59 F = -16. 59 (297) = -4920 psi.

Maximum ¢ ¢

For F in the opposite direction, the maximum deflection and stress, of course, would be
opposite in sign or 0.00126 inches and 4920 pounds per square inch.

The maximum rotation, A®$, at a pivot would result from loadings Fy and M (¢=0).
From the first of Equations (24), the corresponding deflection is:

w=-2.09x% 10" F=-2.09 x 1076 (297)
= -0.00062 in,
This deflection occurs at a radius b = 3, 125 inches from the pivot and causes a AP of:

0. 00062
3.125

2

Ao = 0. 0002 radian (40 seconds) .

Deflections and stresses at the three mounting supports were also considered.
Disregarding local effects due to irregularities in shape of the supports, it was estimated
that deflections and stress would be lower than those calculated above for the trunnion
supports,

A 10-pound resolver is also attached to the frame. Although it is of low weight, it

has a large moment arm which causes considerable bending. Bending stresses of about
+2000 psi were estimated.
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The natural frequency of the frame was estimated by inextensional theory (bending
without stretching of the middle surface). This theory has been shown to be conservative.
The calculations described in Appendix B showed that the frequency of the lowest normal

mode would be:
t E(1l-u
£=79.3 —_— it
al V o

For an aluminum shell with t = 0. 05 inch and a = 9. 75 inches the estimated frequency is:
f = 350 cycles per second .

This frequency is sufficiently high that very little effect on the system frequency would
be expected.

The above analyses of deflection, stresses, and frequency in the frame have been
greatly simplified. Stiffening effects of the flanges and other local reinforcements have
been neglected. Because of this added stiffness, the deflections and stresses, in general
should be lower and the frequency should be higher than the calculated values presented.
The simplified analyses should be considered conservative. Theoretical results should
be confirmed by experiment. This is the emphasis of the work now under way.
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DESIGN SYNTHESIS USING A DIGITAL COMPUTER

Mathematical Analysis

The approach used in the analysis of gimbal rings is based on the stiffness-matrix
method. This method was designed to permit the analysis of complicated, highly re-
dundant structures. However, it was particularly useful for the present problem, since
both the analysis of the stresses and the calculation of the frequency of the vibration of
each ring could be carried out with this method.

The stiffness-matrix method is applied to calculating the deflection and stresses
in the nonuniform ring in the following way. The ring is assumed to be broken up into a
number of short segments, These segments are short enough so that, to a good approxi-
mation, they may be considered as straight beams. Now from simple beam theory, it
is possible to write a set of 12 equations relating the forces and moments on each end of
the beam to the deflections of each end of the beam. In the matrix equation:

—

——
Fi=K;juy

- e
-~ A e oa b I

I AU U dLl© LUS 16 ivid svave was SLIFLIITTm Tt srnctname macnactivaly  and K is the

12 x 12 "'stiffness matrix'' for the beam segment. In the inverse equation:
— —
uj = I{>'k F

151>

the matrix Kf is called the "flexibility matrix'. It is apparent that K’f is the inverse of
K;.

The stiffness-matrix approach consists of appropriately combining the stiffness
matrices of each beam element to obtain a stiffness matrix for the entire ring. Then

F=Ku R
where F is the set of loads and moments applied to the ring at the points at which the
segments are joined (hereafter these points will be called 'nodes') and U is the vector of
displacements of the node points, K is the over-all stiffness matrix of the ring. In gen-

eral K will be of the order of six times the number of node points (less the number of
physical constraints put on the system).

In calculating the frequency of the free vibrations of the ring, the stiffness matrix
is a part of the matrix equation:

Mi+Ku=0,

where M is the mass matrix of the system. (All the masses are assumed to be concen-~
trated at the nodal points.)

This section of the report gives an outline of construction of the stiffness matrix
starting with the derivation of the stiffness matrix of a simple beam.
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Since the beam segments are short, the contribution of shear deflection to the
bending of the beam will be included. The rotational inertia term was neglected. (The
results obtained for the frequencies of vibration may be a little high because of this
assumption.)

The vector representation of the components of the forces, moments, displace-~
ments, and rotations is shown in Figure 8. The vector quantities are assumed positive
if they lie in the positive direction of the corresponding axes. (The right-hand rule is
assumed for the vector representation of the moments and displacements.)

The notation I, and I, will be used for the moments of inertia of the cross section
of the beam relative to the x and z axes respectively, S is the torsional rigidity of the
beam, A is the cross=-sectional area, G the modulus of rigidity, E is Young's modulus,
and L is the length of the beam segment. The ends of the beam segment are numbered
1 and 2. The forces, moments, and displacements are given subscripts 1 and 2 (as in
Figure 8) referring to the end of the beam to which they correspond.

Suppose Point 2 is deflected in the z direction by the amount w) with the accom-
panying ap rotation, keeping the displacement in the other directions zero (including all

displacements at Point 1).

Then by Castigliano's theorem the strain energy of the beam is given by:

2 2
My, + Fuav) LF,,
U= B dy + AG dy .
0 x 0

(The second term represents the so-called '"shear deflection'' of the beam).

The deflection of Point 2 in the z direction is then given by:

du S‘L (Myp + Fooy)y gL Fo2
= = dy +

) ) EI, AG

w dy .
2
oF 5

Assuming that the cross section of the beam segment is uniform:

M,,L% F_,13 F,,L
w2 = + + ;
2EI 3EI AG
X X

similarly

2
du Myl F,oL
(X,Z = = +

My,  EI, 2EI,
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FIGURE 8, FORCES ACTING ON BEAM 1-2
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Writing these two equations in matrix form gives:

w2

az

| AN T T
31 AG 2E1I
X
L2 L
2EL, EL,

The 2 x 2 matrix is the flexibility matrix for this particular deformation.
the forces (i.e., inverting the flexibility matrix) gives:

FzZ
MxZ
3
L L
where Q = IZ_EIX +1—G-.

-M,2 - LF‘z2 or in matrix form:

F, -1 z2
M -L -1 M,>
Substituting this in Equation (27) gives:
— -
~ L
le -1 0 1 - ? W2
1
Q
] L L2 EIx
Mxl _-L - - —Z— —'g" + “""‘G as
L .
— l L -
LT 2 2
Q
L i I
2 6 G 2
similarly for a u, and vy, displacement:
— -
L
Fy2 1 Py u,
21
R L LZ EI, ’
M, > St Y2
3 2 3 AG
L L L _
where R = -m + E .

BATTELLE
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Now by equilibrium

r—

L
2

L2

EIL,

L
2

3

AG

.
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(27)

= -FZZ and Mxl =

(28)

(29)

(30)
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Again for equilibrium of the beam it is necessary that:

Fr1=-Fyz Mz =-M,; +LFy,,
or in matrix form
FXI "1 0 sz
le L "1 MZZ
For a v, displacement,
Y - FyZ L
2 AE
or
AE
FYZ T Vz = -Fyl .
For a rotation B;,
M. 4 = 1
y2 =3 P2

or

By=8SMy=-5SM .

The results obtained so far can be combined into two matrix equations.

from Equations (27), (30), (32), and (34) gives:

BATTELLE
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- —_— u
x2 R 2R 2
AE
Fyz 0 _I._,— 0 0 0 0 VZ
F 0 0 ! - L
z2 Q 2Q 0 w2
vl Tl o L L, Fk .
x2 2Q 30 QAG *2
M, o 0 o0 0 0 B,
2 EI
L L Z
M - 0 0] 0 —
| M2 2R 3R ' QAG| [ 2]
which can be abbreviated as: B
F=Ky,u,

(31)

(32)

(33)

(34)

Combining

(35)

(36)
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From Equations (28), (31), (32), and (34), the following matrix relation between the forces
forces can be obtained:

I — — — —
Fq -1 0 0 0 0 0 sz
Fyl 0 -1 0 0 0 0 FyZ
Fo1 0 o -1 0 0 0 F.o
= 1 s (37)
Mxl 0 0 -L - 0 0 M.>
My’l 0 0 0 0 -1 0 MYZ
M, L 0 0 0 0o -1 MZZA

which is abbreviated as:

Combining Equations (36) and (38) gives:
F1=Bu K, (39)
or

where K| is the matrix product B, K;,. By carrying out this multiplication it can be
shown that:

[F | -% o 0 0 o - z—I;{ [ u, |
Fo1 o -2 o 0 0 0 v,
F,, o 0 -é 5 0 0 w,
- Loz oEL (41)
My ® % "3 & oac ° ° "2
M, o 0o o 0 s o B,
| Mzl ® 0 0 0 ° = ams| L7

It is necessary also to use the matrix equation relating the forces at Point 2 result-
ing from deflections at Point 1 which will be written as:

—
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From the theorem of reciprocity, it is known that K, = Kgl where K%‘I indicates
the transpose of K3 .

This also may be verified by considering the forces and moments acting in Fig-
ure (8) as was done in deriving Equations (35) and (41).

From Equations (39) and (40), K} = B,) K, so that:

— _ T—‘
F, =(By; Kyo) ™ uy

or

— i

T

since K,, is symmetric. From Equation (38),

Fp =By Fy
substituting this in Equation (43) gives:
F1=B21K22 Bil \11 . (24)
This gives all the matrix relations between the deformations and forces at both

ends of the beam. Equations (36), (39), (43), and (44) can be written in the combined
matrix form:

Fi K K2 u
N = - s (45)
Fp Ko1Ky uy

- e —

where F1, Fp, uj, and up are sixfold vectors, and K;. are 6 x 6 matrices. K,, is
shown in Equation (35) and the other three matrices are calculated from K, from the
relations:

K,) =By Kz 5

T

_ _ T
Ki,=K;1 =K, B

21’

and

T
K11 = By Kz By

n

The matrix B, is shown in Equation (37).

The matrices K5, K5, and K;; could have been derived from a consideration of
the appropriate forces and deflections of the beam itself as was done in deriving K3>.
The approach used above was chosen to show how the full 12 x 12 stiffness matrix for a
beam could be derived using the two 6 x 6 matrices K;, and B,,- This approach simpli-
fies the work of programming the calculations for a computing machine.
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Now suppose this beam is part of a larger structure.

34

In order to combine the de-

flections and forces for the various beams that make up the structure, it is necessary to
express all of these deflections and forces in the same coordinate system. This is ac-
complished by multiplying the forces and deflections by the rotation matrix, obtained as

follows:

Consider two coordinate systems shown below:

It is known that the components of a vector in the x', y', z' coordinate system are
related to the components of the same vector in the (x, y, z) coordinate system by the
relation:

where li'

J

is the cosine of the angle

—
F

F

F

Z

SR

-

x1
yl

zl

1z'x

z'y

]

z

between the axes indicated by the subscripts.

(46)

Thus

where (nyl, Fy‘l’ Fz'l) are the components of the force vector F; in the over-all co-

ordinate system of the structure.

—

BATTELLE
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M

M

—

x1

vyl

zl
-

Similarly
—
Lew Lyty
1
y'x ly'y
l.sz ].ZIY
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Combining these last two equations for the sixfold vector F, and F'l gives the relation:

—

F =RF), (47)

where

1Y|x IY‘Y ly'z 0 0 0
lz'x lz'y lz'z 0 0 0
R =
0 0 0 . 1X‘Y lx'z
0 0 0 1y|x ]'Y'Y ly'z
0 0 0 ' 1 '

' 1
z'x “z'y “z'z

The same rotation relation holds between the other sixfold force and displacement vec-
tors referred to the beam and structure coordinates, that is,

!
I
o
H

1
2 2’

up=Ruj,
.a_ —!-‘
uZ--Ru.2 .

Thus, Equations (36), (39), (43), and (44) can be written in terms of the structure co-
ordinates as:

—

RF) =Ky, R U},
R F) =By Ky Ru;
- - (48)
R Fb = Ky, BI, Ru} ,
= T » =
RF)=Bp KoaBz) Ruy
The rotation matrix has the property that
rRT=Rr"1.
Thus, premultiplying both sides of Equation (48) by RT gives:
Fy =RTK,,R u} ,
= _oT >,
Fi=R" By Ky Ry
(49)

Fp=R™K;; By Rup

—
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In the coordinate system of the structure, the analogue of Equation (45) is then:

et ' ' -
F} K], K}, u) (50)
-" - | ] v |
F; K1 K22 us s
where
_sT
K}, =RT B, K,, BT, R,

T T
'12 =R" Ky2 B31 R
=rT
Kz1=R™ By K52 R
T
v
Kz2=R™ Kz R
Equation (50) gives the matrix equation between the displacements and forces at
two ends of a beam when these displacements and forces are related to the coordinate
system of the over-all structure. The matrix
\] 1
Kl 1 KlZ
1
K1 ¥z
will be called the stiffness matrix for the Beam (1,2). Once the stiffness matrices are
calculated for each beam of the structure, it is necessary to combine these matrices in

the proper way to represent the structure as a whole. The way that this is done can be
illustrated by the two-member beam shown below.

2

| 3
Calculating the stiffness matrix of Beam (1,2) gives, as in Equation (50):
- — - —_
1 1 1 1
Fi Kih K2 b
F) K5, Kb, ub
— . — -

For Beam (2, 3), the analogous matrix equation is:

r— — — ey —

Fz| = | Kf2 Kij uy
F3 KY, K33 u3
. - L
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For the two-member frame taken as a unit, the displacements u_'y_: must be equal to u_'z.
The total forces acting at Point 2 must be the sum of F'Z and Fg Thus the matrix equa-
tion for the composite beam is:

- - r— T ~ -
\ 1 1 —_
Fl Kll Klz 0 111
1 1" - 1 ' ) " -1
F,+Fz| = | Kz Kp +Kj; Kjs up
! ' t e |
Fj 0 K3 K33 u3
| _ | Jd L

This result can be easily generalized to more complex structures. It can be seen
that, for a given nodal point i of the structure, the submatrix K;; of the over-all stiffness
matrix will have added into it, one submatrix from each of the beams joined to the point
i. The submatrices K;; and K;; will be unique since there is only one beam connecting
the point i to the point j. (If there is no beam between i and j, Kij = Kji = 0.)

The rules for forming the stiffness matrix for a structure may be summarized as
follows:

(1) Divide the structure up into a set of beams connected at nodal points.
(2) Number the nodal points consecutively irom i io i.
(3) Partition the over-all én x 6n stiffness matrix into 6 x 6 submatrices.

(4) Calculate the basic 6 x 6 stiffness matrix of the beam connecting the
ith to the jth node according to Equation (35).

(5) Calculate the matrices B and R for the Beam (i,j) by Equations (37)
and (47).
K'

(6) Calculate the four submatrices K., K. i1

110 Kijo and ij for the Beam (i,j)

from Equation (50).

(7) Add the submatrices Kii and K!. into the (i,i) and (j,j) submatrices,
respectively, of the over-all stiffness matrix.

(8) Store the submatrices K; and K!i in the (i,j) and (j,1) submatrix slots
of the over-all stiffness matrix.

(9) Perform Steps (4) through (8) for all of the beams of the structure.

These operations give the stiffness matrix relating the forces and deflections of
the complete structure according to the relation:

F=Ku,

where F is the 6n-fold vector of the external loads applied at the n nodes of the struc-
ture and u is the 6n-fold vector of the displacements of the nodes of the structure. K is
the 6n x 6n stiffness matrix of the structure. (It is necessary to apply a sufficient num-
ber of constraints on the frame to keep it from moving as a rigid body. If these con-
straints consist of setting some components of the displacement vector equal to zero, the
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corresponding rows and columns of the stiffness matrix are omitted. The remaining
discussion will refer to such a '"reduced' stiffness matrix.)

If the external loads on the structure are known and it is desired to find the dis-
placements of the nodes of the structure, it is necessary to invert the reduced stiffness
matrix to obtain:

a=KlF . (51)

The process of inverting K is a standard matrix operation that is easily performed
on a computer.

A computer program was written to implement the construction of the stiffness-
matrix calculation. Briefly, this program formed the stiffness matrix from input spec-
ifying the numbers and location of the nodes of the structure, the orientation of the
beams connecting the nodes, and the geometrical parameters of each beam such as A,
I, Iy, etc. , which enter the stiffness matrix in Equation (35).

From the input data, the computer program automatically sets up the stiffness
matrix and inverts it. This flexibility matrix K~ can then be used as in Equation (51) to
calculate the nodal displacements of the structure from one or more sets of exterior
loads.

Once the displacements are calculated, the stresses in each beam segment of the
structure can easily be calculated from the differences between the displacements of the
two noc_if's which lie at its end points. Starting with the two sixfold displacement vectors
ui and \i.g of the ith and jth nodes expressed in the coordinate system of the structure, the
forces F; for the Beam Bjj (the beam connecting the ith and jth nodes) are given by the
equation:

F_] = KJJ le (uJ - ui), (52)
where Rjj is the rotation matrix for the Beam B;: and K;; is the matrix K;, of Equa-
tion (43) for the beam. The forces F; as calcula%ed by Equatigp (52) represent the forces
applied to the jth end of B;. with the ith end built in (i.e., the Fj correspond to forces
applied to the free end of a cantilever beam).

The stresses at any point of the beam are calculated from -I-:j using elementary
beam theory.

A subroutine was written to have the digital computer perform the calculation of
stresses in the frame members from the displacement vector U once it had been
obtained.

It was mentioned at the beginning of this section that the stiffness matrix could be
used to calculate the frequencies of a vibrating frame. In this approach to the vibration
problem, the frame is considered to be a multiple degree of freedom system with all of
the mass concentrated at the nodes. The stiffness matrix represents the aggregate of all
of the springs (beams) connecting the masses. The frequency equation for free vibra-
tions of this system is then:

Mi+Ku=0,
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where U is the acceleration vector of all the nodes and M is the matrix of the masses
associated with each node. (M is a diagonal matrix.) For harmonic motion u = w? u so
that the frequency equation is:

(wWu=-Kju=0.
The frequencies of the modes of vibration of the structure are thus the solutions
for w? that make the matrix (w2 u - K) singular®*. This is the eigenvalue problem of

matrix theory. The solution of this problem was obtained also with a computer program.

The actual solutions obtained for the stresses and frequencies of the gimbal rings
are reported elsewhere in this report.

Analysis of Computer Output Data

The data generated by the computer consisted of the following:

| (1) Displacements and rotations at the 24 node points for each force vector
considered

(2) Membrane, bending and shearing stresses, and various combinations
of these stresses, at the 24 node points for each force vector
considered

(3) The lowest response frequency of the gimbal for each mass vector
considered.

The analysis consisted of plotting the stresses and deflections for eachacceleration
vector and modifying the section where necessary. A new set of input data resulted from
this analysis and was used for the next iteration. At points where the stresses were too
high, the section modulus was increased, and at points of low stress the section modulus
was decreased. This process was repeated until the design proposed in the drawings at-
tached was reached. The stresses and deflections for an 8-g linear acceleration in this
design is shown in Appendix C.
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APPENDIX A

GENERALIZED EQUATIONS FOR RINGS
OF CONSTANT CROSS-SECTION
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A= Area of section

Sr= Section modulus
about r axis

Sz= Section modulus
about z axis

Acceleration
a

M
a
Vr Ms \
.
T
My
t
Vz A43519
Element A

FIGURE A-1, GENERALIZED LOADING CONDITIONS FOR RING
SUBJECTED TO INERTIAL FORCES
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Mz Positive direction of
T all forces as shown
Vf A 43520

FIGURE A-2, INERTIAL FORCES DUE TO ACCELERATION IN
PLANE OF RING
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TABLE A-1. EQUATIONS FOR M,
Location

(o), Mz
degrees X sin 8 cos ¥ X cos B cos ¥
0-Aa -0. 182F ,R-0. 071uR%+0. 137M, +0. 500My
0+Aa -0. 182FyR-0. 07 1uR%+0. 137M,, -0.500My
15 -0. 063FxR~0. 053wR2+0. 115M -0. 066FxR-0. 126wR2-0. 335M,,
30 +0. 026F xR-0. 009wR%+0. 052My -0. 093F4R-0. 206w R2-0. 182M,,
45 +0. 079F xR+0. 037wR%-0. 050My -0. 079F,R-0. 205wR% -0. 050M,
60 +0. 093F,R+0. 085wR2-0. 182M, -0. 026F4R-0. 092wR% -0, 052My
75 +0. 066F yR+0. 079wR2-0. 335M,, +0. 063F,R+0. 145wR2+0, 115M,,
90-Aa -0.500My +0. 182FxR+0. 5000R 2 +0, 137M
90+ Aq +0.500M, +0. 182FxR+0. 500wR2+0 . 137M,,

TABLE A-2. EQUATIONS FOR Tt

Location

() , Tt
degrees x 8in 6 cos ¥ x cos B cos ¥
0-Aa +0. 318F»+0. 500wR+0, 637—1\%2- +0. 500F
0+A0 +0. 318F,+0. 5000R+0. 631%2 -0.500F
15 +0. 438Fx+0. 551wR+0. 615_1‘%)'_ -0.563Fy-0. 385wR+0. 165_1\%55_
30 +0. 526F 0. 695wR+0, 552%& ~0. 593F 0. 706wR+0. 318%
45 0. 579F 1 +0. 902wR+0. 4505’11% -0.579F,-0. 913wR+0. 4503’;{1
60 +0.593F,+1. 156wR+0. 31&%& -0.526Fy-0. 956wR+0. sszMT:i
75 +0. 563F 1. 392wR+0. 165—1\%2- -0.438F,-0. 822wR+0. 6151\/;_X
90-Aa +0. 500F x+1. 57 LlwR -0. 318F4-0. 500wR+0, 637MT:
90+Aq +0. 500F +1, 57 1uR -0.318F - 0. 500wR+0. 637
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TABLE A-3, EQUATIONS FOR V,

Location v
(o), T
degrees x sin 6 cos ¥ x cos B cos ¥
M
0-Aa -0.500F -0. 318F 0. 500wR+0. 637¢—
MX
0+Aa +0. 500Fy -0. 318Fx-0. 5004R+0. 637
M
15 +0, 402F, 40, 123wR-0, 165— -0. 179F 4~ 0. 238wR+0. 615-Rl
M Mx
30 +0. 274F,+0. 203wR-0. 318_RY_ -0.026Fy-0. 079wR+0. 5525
M M
45 +0. 128F +0. 201wR-0.450_RL +0. 128F 5 +0. 203uR+0. 450X
M M
60 -0. 026F+0. 090wR-0. 552—RY— +0. 274F,+0. 5660R+0. 3182
M My
75 -0. 179F -0, 1450R-0, 61&_1{_ +0. 402F ,+0. 956wR+0. 165-—
My
90-Aa -0. 318Fy-0. 500wR~0. 637—¢ +0. 500F ,+1. 571wR
My
90+Aa -0. 318F,~0. 500wR~0. 637 -0.500F,-1.571uR
TABLE A-4. EQUATIONS FOR M,
Location,
(a')) Mr’
degrees X sin V¥
0-Aa +0.500 FyR + 0.571 wR% + 0.500 My
0+Aa +0.500 FxR + 0.571 wR% + 0.500 M,
15 +0.353 FxR + 0.518 wR2 + 0. 483 My + 0. 130 Mx
30 +0.183 FyR + 0.371 R% + 0.434 My + 0. 250 My
45 +0.111 «RZ + 0.354 My + 0.354 My
60 - 0.183 FxR - 0.214 wR® + 0. 250 My + 0.434 M,
75 - 0.353 FyR - 0.512 wR% + 0. 130 My + 0.483 My
90 - Aa - 0.500 FyR - 1.000 wR? + 0. 500 My
90 + A - 0.500 F,R - 1.000 wR2 + 0.500 My
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Acceleration
a sin y

4

Positive direction of all
forces as shown

A 43521

FIGURE A-3, INERTIAL FORCES DUE TO ACCELERATION
PERPENDICULAR TO PLANE OF RING
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TABLE A-5. EQUATIONS FOR My
Location
(o), M,
degrees x sin ¥
0-Aa - 0.500 My
0O+Aa . +0.500 My
15 . 113 FxR + 0. 154 wR® + 0.483 My - 0.130 M,
30 . 183 FxR + 0. 261 wR% + 0.434 M, - 0.250 M,
45 . 207 FyR + 0.326 R + 0.354 M, - 0.354 M,
60 . 183 FyR + 0.317 wRZ + 0. 250 M, - 0.434 M,
75 113 F R + 0.210 «R% + 0.130 M, - 0.483 M,
90 - Aa - 0.500 M,
90+ A +0.500 M

TABLE A-6., EQUATIONS FOR V,

Location

(@, Vg,
degrees x sin ¥

0-Aa - 0.500 Fy

0+Aa + 0.500 Fy

15 + 0.500 Fy + 0.262 wR
30 + 0.500 Fy + 0.524 wR
45 + 0.500 Fy + 0.786 wR
60 + 0,500 Fx + 1, 048 wR
75 + 0.500 Fy + 1.310 wR
90 - Aa + 0.500 Fy + 1.571 wR
90 + A a - 0.500 Fx - 1.571 wR
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CALCULATIONS OF FRAME STRESSES AND DEFLECTIONS
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APPENDIX B

CALCULATIONS OF FRAME STRESSES AND DEFLECTIONS

The calculations of the deflections and stresses from the loadings of Figure 7 are
given below, Also included is the method of calculation used to estimate the natural
frequency of the frame. As stated in the body of this report, the frame together with
the covers was considered to constitute a spherical shell, Thus, the calculations are
based on shell theory,

Axisymmetric Loading

The effects of the axisymmetric loading F 7 of Figure 7 were found from the curves
of influence numbers in Reference 6™, Solution of the problem is aided by the break-
down shown in Figure B-1. The pivot support is assumed to be infinitely rigid compared
to the shell, Thus, the slope and the horizontal deflection at the support are zero and
the boundary equations become:

i
(=]

wi (Fz) + wi, (Qp) + wi, (Mp) (B-1)

Op (Fz) + Ap (Qp) + &p (M) =

|
o

(B-2)

Fz
Fz, Ib
/&\ /‘ Qp, Ib/in Mp, Ib/in.

FIGURE B-1. BREAKDOWN OF PROBLEM FOR AXISYMMETRIC
F, LOADING ON FRAME

3125 g | > g

For the parameters b = 3,125 inches and £ = 0, 386 inches, the ratio-tz—) 0386 " 8

From Reference (6), Figure 10:

L F) 0.12Fy a ) 10.5 Fy a
W T e ———— Op (F T e —————
bz il Z Zmb Et
0.12 Qp b PR
' (Qp) = ——————— A = (11,5 + &) — ,
wy (Qp) ) s DOp (Qb) = ( >) Tt
From Reference (6), Figure 12:
1.36 My, £ 0.95 My, £
wh (Mp) = ——F——,  Lp (M) = ———— .
Where
fl 1 i 117 1b
D = flexural rigidity = —————— = -in,
gy 12 (1- u?)

*References are listed on page 39.
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t
£ = characteristic length = Yat = 0,386 in,
4 Y12 (1 - p2)
2
H = characteristic force = — Bt - 7650 1b.
V12 (1- 49
Substituting the above expressions for w} and Ay in Equations (B-1) and (B-2) gives:
0.12 F
-_——2_7;2—3-+o.1zobb2+1.36Mba:o (B-3)
10,5 Fza ‘{ -ul
___.Z_EE_+11.6650bb+°'95b 2208 My, = 0. (B-4)
T

Simultaneous solution of (B-3) and (B-4) for b = 3,125, a = 9,75, and g = 0,33 yields:

Mp = My at b = 00026 Fy

Qb

N

0.129 Fg
From Qp and F7,

Ng at b = Qp, cos ¢g - Fz sin §g

Qp cos 18,7 - F7 sin 18.7

- 0.4455 F,
M = 0— Ng =pNg = -0,147 Fg

From Figures 10 and 12 of Reference (5):

0.18Fza 0.18 Qp 2 , 0.9 Mp £2

2mH H D
=-0.037 x 104 Fy
Mg=- 0,14 My = - .00036 Fy,

Thus deflection w = - 0,037 x 10"4 F,

Stress 0 =¥ 6—MQ+Et9->-:T 6.24 F7z - 8,90 F4

te
-6 -
Stress Og = +——I\—§—Q+§Q= +0.864 Fy - 2.94 Fg
t t

Antimetric Loading_

Influence coefficients for asymmetric loading not tabulated like they are for
axisymmetric loadings. Therefore, the basic theories applicable to spherical shells
had to be employed to derive the expressions for deflections and stresses for the anti-
metric loading Fx of Figure 7, Following the common approach to solution of shell
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problems, the membrane theory was used to balance the external force Fx and a
general theory (membrane plus bending) was used to match the boundary conditions. The
general theory used was that given by Steelel7),

The loading Fx of Figure 7 is antimetric (cosine - sine variation). Thus assume:

u = deflection in 6 direction = u] sin 6

v = deflection in ¢ direction = vy cos O

w = deflection in normal direction = w) cos ]

= membrane force in O direction = Ng] cos 6

Ng = membrane force in ¢ direction = N¢] cos 8
Ngg = membrane shear force = Nggjsin ]

Mg = bending moment in 6 direction = Mg; cos 6

Mg = bending moment in ¢ direction = Mg] cos 6
Mgg = twisting moment = Mggp] sin 6

Q¢> = transverse shear force = Q¢1 cos O,

The membrane forces which balance the external force Fx are:

Fx
Ng1 = - Né1 = 35535 ® sin @ (B-5)
Fx
Nop1 = (B-6)

a T sin ¢ cosé ¢

The membrane deflections, found from an integral solution using the stress-strain rela-
tions and the above membrane forces, are:

2(l+u) Fx [ o)
up = ——E—t-___-Tr 5 cos ¢ - log tan 5 - 2 cos ¢ log cot d)} (B-7)
F
vy = Z (;: )—% [cos ¢ log tangzl + %j[ (B-8)
F
wlzz—(lf%—p'—)—ﬂ}-(— [%- csc(bsecd)—cot¢+sin¢logtan%] . (B-9)

The approximate general solution of Steele(7) for a shell with hole at the apex and
closed at the other pole gives:

oy AL ¥ [Cl ¢V kei1 £ - Cp £ ker) Q] (B-10)

a sin ¢
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vy =(l+p vyl [—cl keij £+ Cp ker, g] (B-11)
w) =V [Cl ker) £ + C keij C] (B-12)
Ngy = EH¥ [cl (kerjy { + (=2 keij { - {-lkeij &)
+C, (keij £ - £"% ker) { + ¢! ker] c)] (B-13)
Np1 %}\3% [cl (¢! kei £ - £-2keij &)

+Cp (-1 ker) £+ {2 ker, z;)] (B-14)

_EtvY9¢ - 2! - .
Nggp1 —m[cl (¢ 1 keij £ - ¢ 2kell £)

+C; (-C'l kerl| + C_Z ker C)i' (B-15)

Mg =%’ [—Cl{p. keij £ - (1 - ) (¢! ker| £ - 2 ker) C)}

(B-16)
+Cz{# kery £+ (1 - p) (671 keiy ¢ - £7% kei) O}]
Mg =%‘i’ [—Cl{keil £+ (1-w (- ker] £ - 7% ker) C)}
;, ' (B-17)
+Cziker1 - (1 - ) (C-l keij £ - C_Z keij C)}]
1-p)Ho¥ |
Moy =T 5D {Cl (-4 kery 4 0 ker O (B-18)
+C2( L7 keiy £+ £72 kei C)}
Qg1 =-}-‘3-:—‘1’§-1 [-cl kei] £+ Cp ker] c] . (B-19)

The above solution decreases exponentialy with increasing { where

-2
£=39
e

Sin

The Bessel functions kei] and ker] and their derivatives are related to the Bessel
functions kei and ker by:

ker, { = L (ker' £ - kei' ¢)
\2

l
keij { = — (ker' { + kei' )
2
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ker| £ = -+ (-kei£- ¢"!ker' ¢ - ker ¢+ ¢! kei' )

2

kei] L= L (-keil-C"lker' ¢ +ker £~ ¢-1 kei' £).

1A

Values of the functions kei, ker, kei', and ker' tabulated in Reference (8) were used for
calculations,

The boundary conditions at ¢ (see Figure 7) require that the hoop strain be zero
and that the rotation of the boundary be equal to that of a rigid ring, Thus:

B.C.(1) €g = 0 = Ngj = Ng] at ¢g

3wy
B.C.(2) Wy cot ¢ -W: 0 at ¢g

Introducing Equations (B-5), (B-13), and (B-14) into the equation for

Boundary Condition (1), and Equations (B-9), (B-12), a(a}?b‘g)’ anda Ba:; 2) into the equa-

tion for Boundary Condition (2); and solving simultaneously for C} and C; yields for the
parameters:

D =117 lb-in.
£ = 0.386 in.
H=76501b
-~ ~1r
\Jl - - ~
C2 =-519X,
where
4(1 + W Fyx

AL -6
X=—gr—=3.39x107° Fx

Substituting these back into the equations for normal deflection wj, membrane forces
Ng) and Ng1, and bending moments Mg and My yields:

wl = -0.233 X
1 Et X
N == = 0.597
¢1 “ Ng; 9 >
M¢1 = —0.240-I—-Ia—>-(

- HX
Mg = -0.592 —
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Deflection, w = -0.790 x 106 Fy

- 6Mp Ny
Stress,G¢=+—§—+T:i3.78FX+Z.08Fx

_6Mg Ng
Stress,06=+-—t—2—+—{—=:kl.53Fx+0.69FX .

Antimetric Bending

The calculation procedure for the antimetric bending moment M (see Figure 7) was
exactly like that for the antimetric force Fx above, except that the balance of the moment
M by the membrane theory gave:

M
N(bl = =-Ng; = —) csc ¢ (B-20)
Nggpl =-7T—I\%2 cotd . (B-21)

The membrane deflections again found from an integral solution using the stress-strain
relations resulted in:

u1=—L2C[Zlog2csc¢+cos¢logtan%-—;] (B-22)
K ¢ .1

=- K X4 B-23

v) 5 I:log tan S + 3 cos d)} ( )

w1 :5[3 csc ¢ - sin (1)] . (B-~24)

With the same boundary conditions as above, the general solution gave:
C; = -1003
Cp = -346 «,

where

_4a(l+puyM
K =
Et 7 b

3,39 x 106 M

Substituting these back into the equations for normal deflection w}, membrane forces
Ng] and Ng) and bending moments Mg; and Mg yielded:

2,735 k

w1

Et
0.490 3

"
1

1
N - N
¢l i 61
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Mel—-o 380—-5-

j _ H k
Mgl = -1.236 =

Thus

Deflection, w = 9. 27 % 10-6 M

—-6M N
Stress, vy = T——L +—L =790 M + L71 M
t
__6M9 Ng
Stress, 0g =+ 2 t— =%2.43 M +0.56 M

Natural Frequency

The natural frequency of the frame with attached covers was estimated by the
inextensiounal theory first used by Lord Rayleigh(9) in 1881, The frame was assumed to
| be a complete spherical shell with two trunnion openings at ¢ = 20 and ¢2 = 160 as

shown in Figure B-2,

$,=160°

FIGURE B-2. ASSUMED SHELL SHAPE OF FRAME FOR
CALCULATION OF NATURAL FREQUENCY

It is assumed that the displacements are harmonic functions of the form:
u = uy (¢) sin ng, v = vy () cos ng, w = wp, () cos ng; (B-25)

U, Vns and wy for inextensional deformations are given by Flugge [ Reference (5),

page 90].
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up = sin¢ [A tann% - B cot® %] (B-26)
vp = sin ¢ [A tann% + B cott® %] (B-27)
wp = -A{n + cos ¢) tan“% + B (n - cos ¢) cotn% . (B-28)

(For n = 0, 1 these equations represent rigid-body motions, Thus the theory is good
only for n >2.) The change in curvature and twist also given by Fliigge [ Reference (5),
page 387] are:

2
Kp = -KQ = -—anz(:iT;)(A tann%— B cotn%) cosn 6 (B-29)
2 -
Kogp = n (ot - 1) (A tann?i +B cotng) sinn 6 (B-30)
a2 sin2 ¢ 2 2

The potential strain energy of bending from Novozhilov [ Reference (10), page 47] is:

¢ 2m
V:% E}Cq)'l'lce)z -2 (1 -H) (kg /c¢-lce¢2)] al sin¢d9d¢ .

o7 0 (B-31)

The kinetic energy due to vibration is:

d2 2m )
T:z1 SS -L;-(fl2+\'/2+\£/2)sin¢ded¢ , (B-32)
1 0
where
., _ du
U = —
t

Lagrange's equations of motion state that

d/dT\, oV

—(=)+=—=0

dt\3a/ 0A (B-33)
4 3_T>+é! 0

dt\oB/ dB

In general the vibration will be coupled as indicated by Equations (B-33). To find
the lowest normal mode corresponding to the A component, let B = 0 and let

A=A"cos(wt+7y) . (B-34)
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B-9 and B-10
The lowest frequency occurs for n = 2 as shown by Naghdi and Kalnins and others, Let-

ting n = 2, and substituting Equations (B-26) to (B-30) into (B-31) and (B-32), and then
further substituting the resulting equations into (B-33) results in:

w = 498 — qulp'—&)-, radians/sec. (B-35)
a

The frequency { is

t E (1 -
f =%r = 79'3a_2 \l—-—i—pa‘i)- , cycles/sec. (B-36)

™
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APPENDIX C

STRESSES AND DEFLECTIONS IN PROPOSED DESIGN

FOR AN 8-G LINEAR ACCELERATION
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C~1

APPENDIX C

STRESSES AND DEFLECTIONS IN PROPOSED DESIGN
FOR AN 8-G LINEAR ACCELERATION

Calculation of the Maximum Primary Bending Stress
and Associated Orientation of Acceleration

The equations shown below may be used in conjunction with the stress curves
included in this appendix,

The nomenclature used in these equations is as follows:

'
oy
9z
Ozy

0zZX

oM

¥m

stress due to acceleration in the X-direction
stress due to acceleration in the Y-direction
stress due to acceleration in the Z-direction
stress due to acceleration in the ZY plane (plane of middle gimbal)

stress due to acceleration in the ZX plane (plane of outer and redundant
gimbal)

orientation of acceleration in plane of gimbal which produces the

maximum stress at the point under consideration (measured from + Z
axis, -90° < GM <+ 90°)

orientation of acceleration from plane of gimbal which produces the
maximum stress at the point under consideration (measured from plane
of gimbal, -90° < ¥, <+ 90°).

For the middle gimbal (Figures C-2, C-3 and C-4):

O\ = tan~1 <gzz> (C-1)

Ogzy = Oz cos 8 sin 8 (C-2)
= tan~1 < > (C-3)

OMAX = Ozy cos ¥ + Oy sin ¥, (C-4)
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C-2

For the outer gimbal (Figures C-6, C-7 and C-8):

8 = tan” ( > (C-5)

Ozx = Oz cOS GM + GX sin OM (C-6)
1 °x

= tan” Cc-~-7

<°ZX ( )

OMAX = Ozx ©OS ‘l’M + o sin ‘I/M (C-8)

For the redundant gimbal (Figures C-10, C-11 and C-12):

M = tan”! < > (C-9)
o]

Oyx = Oy COS 9 sin 8 (C-10)
-1 -

¥, = tan <°zx (c-11)

GMAX = OZX [of 0 -] YM Y sin YM (C'IZ)
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Middle gimbal

Inner gimbal

Outer gimbal

Redundant
gimbal

A 43522

FIGURE C-~1, PLATFORM SCHEMATIC SHOWING SUPPORT LOCATIONS
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TABLE C-1. ABSOLUTE DISPLACEMENTS(2) FOR AN 8-G
LINEAR ACCELERATION IN +X DIRECTION
WITH FLEXIBLE TRUNNIONS

Displacement, 106 inches

Middle Outer Redundant
Gimbal Gimbal Gimbal
Node X Y Z X Y Z X Y VA
1 -3082 0 0 -1614 0 0 -1415 0 0
2 -3068 0 0 -1612 0 +112 -636 1 -3
3 -2747 0 0 -1612 0 +118 -173 ) +323
4 -2350 0 0 -1574 0 +81 +75 0 +597
5 -1950 0 0 -1511 0 +42 +69 0 +578
6 -1628 0 0 -1474 0 -1 -3 0 +428
7 -1614 0 0 -1415 0 0 0 0 0
8 -1628 0 0 -1474 0 +1 -3 0 -428
9 -1950 0 0 -1511 0 -42 +69 0 -578
10 -2350 0 0 -1574 0 -81 +75 0 -597
11 -2747 0 0 -1612 0 -118 -173 0 -323
12 -3068 0 0 -1612 0 -112 -636 0 +3
13 ~-3082 0 0 -1614 0 0 -1415 0 0
14 -3068 0 0 -1612 0 +112 -636 0 -3
15 -2747 0 0 -1612 0] +118 -173 0 +323
16 -2350 0 0 -1574 0 +81 +75 0 +597
17 -1950 0 0 -1511 0 +42 +69 0 +578
18 -1628 0 o -1474 0 -1 -3 0 +428
19 -1614 0 0 -1415 0 0 0 0 0
20 -1628 0 0 -1474 0 +1 -3 0 -428
21 -1950 0 0 -1511 0 -42 +69 0 -578
22 -2350 0 0 -1574 0 -81 +75 0 -597
23 -2747 0 0 -1612 0 -118 -173 0 ~-323
24 -3068 0 0 -1612 0 -112 -635 0 +3
(a) Displacement of neutral axis.
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TABLE C-2. ABSOLUTE DISPLACEMENTS(2) FOR AN 8-G
LINEAR ACCELERATION IN +Y DIRECTION
WITH FLEXIBLE TRUNNIONS

Displacements, 10-6 inches

Middle Outer Redundant
Gimbal Gimbal Gimbal

Node X Y Z X Y Z X Y Z
1 0 -5325 0 0 -5039 0 0 -4171 0
2 0 -5251 0 0 -5024 0 0 -4066 0
3 0 -5171 -39 0 -4856 0 0 -2955 0
4 0 -5086 -107 0 -4642 0 0 -1714 0
5 0 -5039 -158 0 -4339 0 0 -599 0
6 0 -5042 ~146 0 -4183 0 ] -199 0
7 0 -5039 0 0 -4171 0 0 0 0
8 0 -5042 +146 0 -4183 C 0 -199 0
9 0 -5039 +158 0 -4339 0 0 -599 0
10 0 -5086 +107 0 -4642 0 0 -1714 0
11 0 -5171 +39 0 -4856 0 0 -2955 0
12 0 ~5251 0 0 -5024 0 0 -4066 0
13 0 -5325 0 0 -5039 0 0 -4171 0
14 0 =5251 0 0 -5024 0 0 -4066 0
15 0 -5171 -39 0 -4856 0 0 -2955 0]
16 0 -5086 -107 0 ~-4642 0 0 -1714 0
17 0 -5039 -158 0 -4339 0 0 -599 0
18 0 -5042 -146 0 -4183 0 0 -199 0
19 0 -5039 0 0 -4171 0 0 0 0
20 0 ~-5042 +146 0 -4183 0 0 -199 0
21 0 -5039 +158 0 -4339 0 0 -599 0
22 0 -5086 +107 0 -4642 0 0 -1714 0
23 0 -5171 +39 0 -4856 0 0 -2955 0
24 0 -5251 0 0 -5024 0 0 -4066 0

(a) Displacement of neutral axis.
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TABLE C-3. ABSOLUTE DISPLACEMENTS(2) FOR AN 8-G
LINEAR ACCELERATION IN +Z DIRECTION
WITH FLEXIBLE TRUNNIONS

Displacement, 10~ inches

Middle Quter Redundant
Gimbal Gimbal Gimbal
Node X Y Z X Y Z X Y Z
1 0 0 -1562 0 0 -1267 0 0 -1075
2 0 +150 -1559 +1 0 -1194 -663 0 -1069
3 0 +162 -1562 -27 0 -1133 -596 0 -1017
4 0 +111 -1516 -68 0 -1085 -294 0 -670
5 0 +42 -1429 -86 0 ~1070 -62 0 -241
6 0 -1 -1345 -717 0 -1077 +1 0 -111
7 0 0 -1267 0 0 ~-1075 0 0 0
8 0 +1 -1345 +77 0 ~-1077 -1 0 -111
9 0 -42 -1429 +86 0 ~-1070 +62 0 -241
10 0 -111 -1516 +68 0 -1085 +294 0 -670
11 0 -162 -1562 +27 0 ~1133 +596 0 -1017
12 0 -150 -1559 -1 0 -1194 +663 0 -1069
13 0 0 -1562 0 0 -1267 0 0 -1075
14 0 +150 -1559 +1 0 -1194 -663 0 -1069
15 0 +162 -1562 =27 0 -1133 -596 0 -1017
16 0 +111 -1516 -68 0 -1085 -294 0 -670
17 0 +42 -1429 -86 0 -1070 -62 0 ~241
18 0 -1 -1345 -717 0 -1077 +1 0 -111
19 0 0 -1267 0 0 -1075 0 0 0
20 0 +1 -1345 +77 0 -1077 -1 0 -111
21 0 -42 -1429 +86 0 -1070 +62 0 ~-241
22 0 =111 -1516 +68 0 -1085 +294 0 -670
23 0 -162 -1562 +27 0 ~1133 +596 0 -1017
24 0 -150 -1559 -1 0 -1194 +663 0 ~1069
(a) Displacement of neutral axis,
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TABLE C-4.

C-18

ANGLE OF TWIST FOR AN 8-G LINEAR

ACCELERATION PERPENDICULAR TO

PLANE OF GIMBAL WITH FLEXIBLE
TRUNNIONS

Angle of Twist, 10-6 radians

Middle Quter Redundant
Gimbal Gimbal Gimbal
Node +X Acceleration +Y Acceleration +Y Acceleration

1 502 293 892

2 471 276 800

3 249 134 267

4 0 -42 -332

5 -249 -168 -733

6 -471 -230 -1060

7 =502 -281 -1122

-Symmetrical -Symmetrical -Symmetrical

TABLE C-5. ANGLE OF TWIST FOR AN 8-G LINEAR

ACCELERATION PERPENDICULAR TO
PLANE OF GIMBAL WITH RIGID
TRUNNIONS

Angle of Twist, 10-6 radians

Middle Outer Redundant
Gimbal Gimbal Gimbal
Node +X Acceleration +Y Acceleration +Y Acceleration

1 0 33 24

2 50 50 88

3 50 26 22

4 7 -4 -63

5 -41 ~-15 -96

6 -79 -30 -108

7 ~-60 25 0

-Symmetrical -Symmetrical ~-Symmetrical

BATTELLE

MEMORIAL

INSTITUTE



TABLE C-6. ABSOLUTE DISPLACEMENTS(2) FOR AN 8-G

LINEAR ACCELERATION IN +X DIRECTION

WITH RIGID TRUNNIONS

Displacements, 10-© inches

Middle Outer Redundant
Gimbal Gimbal Gimbal
Node X Y Z X Y VA X Y Z
1 -1385 0 0 -1079 0 0 -855 0] 0
2 -1372 0 0 -1076 0 +134 -243 0 -6
3 -1319 0 0 -1075 0 +137 +18 0 +174
4 -1241 0 0 -1031 0 +93 +72 0 +227
5 -1159 0 0 =960 0 +47 +23 0 +127
6 ~-1091 0 0 -918 0 0 -3 0 +69
7 -1079 0 0 -855 0 0 0 0 0
8 -1091 0 0 -918 0 0 -3 0 +69
9 -1159 0 0 -960 0 -47 +23 0 -127
10 -1241 0 0 -1031 0 -93 +72 0 =227
11 ~-1319 0 0 -1075 0 -137 +18 0 -174
12 -1372 0 0 -1076 0 -134 -243 0 +6
13 -1385 0 0 -1079 0 0 -855 0 0
14 ~1372 0 0 -1076 0 +134 -243 0 -6
15 -1319 0 0 -1075 0 +137 +18 0 +174
16 -1241 0 0 -1031 0 +93 +72 0 +227
17 -1159 0 0 -960 0 +47 +23 0 +127
18 -1091 0 0 -918 0 0 -3 0 +69
19 -1079 0 0 -855 0 0 0 0 0
20 -1091 0] 0 -918 0 0 -3 0 -69
21 -1159 0 0 -960 0 -47 +23 0 =127
22 -124] 0 0 -1031 0 -93 +72 0 =227
23 -1319 0 0 -1075 0 -137 +18 0 -174
24 -1372 0 0 -1076 0 -134 ~-243 0 +6
(a) Displacement of neutral axis.
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TABLE C-7. ABSOLUTE DISPLACEMENTS(2) FOR AN 8-G

C-20

LINEAR ACCELERATION IN +Y DIRECTION
WITH RIGID TRUNNIONS

Displacements, 107% inches

Middle Outer Redundant
Gimbal Gimbal Gimbal

Node X Y Z X Y VA X Y Z
1 0 -1254 0 0 -927 0 0 -719 0
2 0 -1176 +2 0 -914 0 0 -638 0
3 0 -1085 -45 0 -873 0 0 -454 0
4 0 -985 -126 0 -821 0 0 -254 0
5 0 -928 -190 0 -774 0 0 -92 0
6 0 -930 -181 0 =731 0 0 ~-18 0
7 0 -927 0 0 -719 0 0 0 0
8 0 -930 +181 0 -731 0 0 -18 0
9 0 -928 +190 0 -774 0 0 -92 0
10 0 -985 +126 0 -821 0 0 -254 0
11 0 -1085 +45 0 -873 0 0 -454 0
12 0 -1176 -2 0 -914 0 0 -638 0]
13 0 -1254 0 0 -927 0 0 -719 0
14 0 -1176 +2 0 -914 0 0 -638 0
15 0 -1085 ~-45 0 -873 0 0 -454 0
16 0 -985 -126 0 -821 0 0 -254 0
17 0 -928 -190 0 =774 0 0 -92 0
18 0 -930 -181 0 -731 0] 0 ~18 0
19 0 =927 0 0 -719 0 0 0 0
20 0 -930 +181 0 -731 0 0 -18 0
21 0 -928 +190 0 -774 0 0 -92 ¢]
22 0 -985 +126 0 -821 0 0 -254 0
23 0 -1085 +45 0 -873 0 0 -454 0
24 0 -1176 -2 0 -914 0 0 -638 0

(a) Displacement of neutral axis.
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C-21 and C-22

TABLE C-8. ABSOLUTE DISPLACEMENTS(2) FOR AN 8-G
LINEAR ACCELERATION IN +Z DIRECTION
WITH RIGID TRUNNIONS

Displacements, 10~© inches

Middle Outer Redundant
Gimbal Gimbal Gimbal
Node X Y Z X Y Z X Y Z

1 0 0 -963 0 0 -796 0 o0 -700

2 0 +42 961 +3 0 -739  -365 0 -694

3 0 +61 =967 -9 0 -707 -380 0 -699

4 0 +52 =954 -13 0 -697 -207 O -497

5 0 +23 -914 -3 0 -700 -46 0 -196

| 6 0 -2 -861 +3 0 -702 +2 0 -95
| 7 0 0 -796 0 0 -700 0 o 0
| 8 0 +2  -861 -3 0 -702 -2 0 -95
| 9 0 -23  -914 +3 0 -700 +46 0 -196
: 10 0 -52  -954 413 0 -697 4207 0 -497
? 11 0 -61 -967 +9 0 -707 +380 0  -699
Q 12 0 -42  -961 -3 0 -739 4365 0 -694
‘ 13 0 0 -963 0 0 -796 0 o0 -700
| 14 0 +42  -961 +3 0 -739 =365 0 -694
| 15 0 +61  -967 -9 0 -707 =380 0 -699
| 16 0 +52 -954 -13 O -697 -207 O -497
| 17 0 +23 -914 -3 0 -700 -46 0 -196
| 18 0 -2 -861 +3 0 -702 2 0 -95
L 19 0 0 -796 0 o0 -700 0 0 0
| 20 0 +2  -861 -3 0 -702 -2 0 -95
; 21 0 -23 -914 +3 0 -700 +46 0 -196
22 0 -52  -954  +13 0 -697 4207 0O -497

23 0 -61  -967 +9 0 -707  +380 0 -699

24 0 -42  -961 -3 0 -739 4365 0 -694

(2) Displacement of neutral axis.
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APPENDIX D

PHYSICAL PROPERTIES OF MIDDLE,

OUTER, AND REDUNDANT GIMBALS
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FIGURE D-1. MATHEMATICAL MODEL



TABLE D-1. NODE COORDINATES AND MASSES(a)

Mass,
X, Y, z, 10"4 1b-sec?
Node inches inches inches inches
A. Middle Gimbal

1 0 -6.25 0 98. 00
2 0 -6.25 +2.75 4.16
3 0 -5. 65 +3.86 1.63
4 0 -4.83 +4.83 1. 48
5 0 -3.86 +5.65 1.63
6 0 -2.75 +6.25 4.16
7 0 0 +6.25 70.60

Symmetrical about Y and Z axis

B. Outer Gimbal

1 0 0 +5.19 46.50
2 -2.56 0 +5.19 3.19
3 -3.56 0 +4.68 1.96
4 -4.38 0 +3.92 1.96
5 =5.00 0 +3.00 2.03
6 -5.88 0 +2.25 3.33
7 -5.88 0 0 47.60

Symmetrical about X and Z axis

C. Redundant Gimbal
1 ~7.63 0 0 81.40
2 -7.63 0 -4.25 8.32
3 -6.48 0 -5. 86 5.46
4 -5.00 0 -7.17 5.46
5 -3.25 0 -8.13 4.28
6 -2.25 0 -8.63 4.51
7 0 0 -8.63 61.50

Symmetrical about X and Z axis

(2) Mass of inner gimbal = 662 x 10”4,
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TABLE D-2. GEOMETRICAL PROPERTIES OF MIDDLE

GIMBAL
S(a’),
L, A, L I,, 10® in-1b
Beam inches inches?2 inches4  inches4 radians
A. Proposed Design
1-2 2.75 1.780 5.000 0.2500 2.00
2-3 1.26 0.683 0.479 0.0282 0.70
3-4 1.27 0.683 0.479 0.0282 0.70
4-5 1.27 0.683 0.479 0.0282 0.70
5-6 1.26 0.683 0.479 0.0282 0.70
6-7 2.75 1.780 5.000 0.2500 2.00
B. Present Design
1-2 2.75 2.32 15. 00 0.290 4.80
2-3 1.26 2.32 5.10 0.100 6.70
3-4 1.27 2.32 5.10 0.100 6.70
4-5 1.27 2,32 5.10 0.100 6.70
5-6 1.26 2.32 5.10 0.100 6.70
6-7 2.75 2.32 15.00 0.290 4.80

(2) Torsional rigidity:

= I
5=3

8 = total angle of twist of the beam

T = torque applied at ends of beam.
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TABLE D-3. GEOMETRICAL PROPERTIES OF OUTER

GIMBAL
S,
L, A, I, 1, 100 in-1b
Beam inches inches? inches4 inches4 radians

A. Proposed Design
1-2 2.56 2.000 5.000 0.2500 2.28
2-3 1.12 0. 889 0.670 0.0336 1.35
3-4 1.12 0.889 0.670 0.0336 1.35
4-5 1.12 0.889 0.670 0. 0336 1.35
5-6 1.16 2,000 1.000 0.0880 5.25
6-7 2.25 2.000 5.000 0.2500 2.60

B. Present Design
1-2 2.56 2,32 15. 00 0.2900 5.20
2-3 1.12 2.32 5.10 0.1000 7.60
3-4 1.12 2.32 5.10 0.1000 7.60
4-5 1.12 2.32 5.10 0.1000 7.60
5-6 1.16 2.32 5.10 0.1000 7.60
6-7 2.25 2.32 15. 00 0.2900 5.90
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D-5 and D-6

TABLE D-4. GEOMETRICAL PROPERTIES OF REDUNDANT

GIMBAL
. S,
L, A, ) I, 106 in-1b
Beam inches inches? inches4 inches4 radians
A, Proposed Desigg’
1-2 4.25 1.88 2.00 0.1000 2.00
2-3 1.98 1.44 1.16 0.0293 0.80
3-4 1.98 1.44 1.16 0.0293 0.80
4-5 1.98 1.44 1.16 0.0293 0.80
5-6 1,12 1.88 1.41 0.0610 1.10
6-7 2.25 1.88 5.00 0.2500 2.00
B. Present Design
1-2 4.25 3.20 15. 00 0.2500 4.80
2-3 1.98 3.20 12. 40 0.1270 1.10
3-4 1.98 3.20 12.40 0.1270 1.10
4-5 1.98 3.20 12.40 0.1270 1.10
5-6 1.12 3,20 12.40 0.1270 2.00
6-7 2.25 3.20 20.00 0.5000 2.00
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